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Equations which modify those derived by Widnall & Bliss (1971) and Moore & 
Saffman (1972) are presented in which jet-like flow along the axis of a vortex tube 
interacts with the motion of the tube. The equations describe two major effects. The 
first is the propagation of axial waves along the vortex tube which is similar to the 
flow of shallow water. A local decrease in cross-section area of the vortex tube 
produces higher swirling velocity and lower pressure. The resulting axial pressure 
gradient causes a propagating wave of area and axial velocity in order to move fluid 
into the region of smaller area. The second effect is instability to helical disturbances 
when the jet-like axial velocity is high enough to overcome the stabilizing effect of 
the swirling motion. An elementary nonlinear theory of vortex breakdown is 
presented which has an analogy with the formation of bores in shallow-water theory. 
A numerical example shows the growth of a helical disturbance behind a vortex 
breakdown front. 

1. Introduction 
The velocity field induced by tubes of concentrated vorticity in an otherwise 

irrotational fluid may be calculated from the Biot-Savart integral (Leonard 1985) of 
the complete vorticity field. This velocity field may be used to convect the vortex 
tube according to the general laws of inviscid fluid mechanics. The thin filament 
approximation treats the vortex tube as a space curve, but to calculate the velocity 
a t  a point on this curve the structure of the vortex core must be accounted for in 
order to avoid divergence of the integral. One method of doing this is to modify the 
integrand near the singular point. A method proposed by Rosenhead (1930) leads ta 
a modified Biot-Savart law for the velocity VB(s,t) at a point r(s, t)  on the 

where r is the circulation around the filament and s is the arc length along the space 
curve. In this work we will select the direction of integration to be in the direction 
of the vorticity, then the circulation will always be positive. Moore (1972) showed 
that the correct velocity for a vortex ring results if p is proportional to the local core 
radius cr with a coefficient that depends on the vorticity distribution in the core. For 
a hollow vortex y = exp ( -a) (T while for uniform vorticity p = exp (-i) cr. Several 
methods have been used to determine the variable core radius cr. One method 
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determines the local core radius from the local stretching. That is, if 6 is the initial 
arc length aIong the vortex (a Lagrangian variable) then 

is the local stretch ratio. Conservation of mass relates cr to A by 

where cr,, is the initial core radius (assumed constant). There is an approximation here 
because the dynamical effects of the spatial variation of core radius are neglected. 
Another method for defining the core radius follows from a suggestion by Moore & 
Saffman (1972; hereinafter referred to  as MS), that axial waves would quickly 
smooth out any variations in cr. In  this approximation u is taken to be a function of 
time alone, chosen so that the total volume of the core is constant. 

I n  the present paper, modifications of the dynamical equations proposed by 
Widnall & Bliss (1971 ; hereinafter referred to as WB) and MS are presented. These 
modified equations permit axial waves of area and velocity in the vortex tube and 
allow the local core radius to  be determined dynamically. One consequence of axial 
flow in a curved vortex tube is the possibility of unbalanced centrifugal forces which 
can affect the overall motion of the vortex through the ‘fire hose’ instability. 

I n  $2 the basic equations are presented. I n  $3 these are cast in the form of intrinsic 
equations which describe the motion of the vortex tube in terms of the local torsion, 
curvature and area without regard for the position of the tube in space. These 
equations are applied to the motion of vortex rings and helices. In $4 the equations 
are specialized to  one-dimensional flow where wave phenomena similar to  shallow 
water waves, and described by the same equations, are found. A particular result is 
a nonlinear theory of strong vortex breakdown which is analogous to Rayleigh’s 
theory of bores. In $5 the complete three-dimensional equations are integrated 
numerically, showing the growth of helical disturbances on a vortex with an area 
varying wave. 

2. Vortex dynamics with core variation and cross-flow Kutta-Joukowsky 
lift 

The vortex tube will be modelled by a centreline space curve along which a mass 
pA(s, t )  per unit length and a velocity V(s,  t )  are prescribed, where A (  = na2) is the 
local cross-sectional area and V is defined as the average velocity over a cross-section. 
This average velocity can include a jet-like component along the axial direction of 
the vortex. The shape and motion of the centreline are described by r = r(5, t )  where 
6 is a material variable defined such that ar(6, t ) / a t  = V. A point with fixed 6 moves 
with the velocity V (the derivative a/at taken with 6 fixed is a material derivative). 
Arc length s along the curve is related to  6 by (1.2) and the local tangent vector is 
given by 

The local vorticity is in the direction of f. Conservation of mass expressed by 
a(A ds)/at = 0, is equivalent to (1.3) because of the definition of A. The rate of change 
of momentum of the fluid in a control volume in the vortex with ends consisting of 
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disks a t  f and [+dF which are perpendicular to the centreline of the vortex and 
moving with it is 

p A d d V / a t + J 6 + d 6 p ~ ( ~ -  V,). fdA- l-6 ~ u ( u -  V,) - idA, (2.2) 

where v-is the local velocity in the vortex tube and V, is the velocity of the disk 
surface. The integrals are the net momentum flux into the control volume through 
the disk surfaces. A non-zero momentum flux can be caused by the non-uniformity 
of the axial components of u or V,. The latter results from rigid rotation of the 
control surface disk about a diameter along the binormal to the centreline curve. 
The integral term would be exactly zero if the axial velocity were a slightly non- 
uniform slug flow with u - i = V, - i. As a statement of ignorance these momentum 
integrals will be neglected. Indeed, it is difficult to make any simple, but realistic, 
axial velocity assumption because of viscous and gyroscopic effects. The momentum 
integral terms are the only terms in the resulting equation which are strongly 
dependent on the axial velocity profile, and to  the extent that these terms are 
negligible the results will be profile independent. 

An element of the vortex is pictured as a rotating slug of fluid sliding along a 
twisted tube which has transverse motion relative to  the fluid outside the tube. (For 
a ‘hollow’ vortex the slug slides without rotating.) The local velocity outside the 
vortex tube consists of a swirling flow plus a more or less uniformly approaching cross- 
flow which streams around the vortex tube. This cross-flow is approximated by the 
Biot-Savart velocity V, (evaluated a t  the centreline of the tube). MS have shown 
indirectly that this is a correct interpretation if the curvature of the tube is small. 

The equation of motion of an element of the vortex is obtained by equating the 
rate of change of momentum of an element to the pressure forces which act on it. This 
results in the equation 

where u = V -  V, is the velocity of the vortex relative to the surrounding fluid, and 
uT = u- ii. u is its transverse part. Each of these terms will be discussed. The first 
term on the right-hand side of (2.3) is an added mass force caused by modification 
of the surface pressure by transverse acceleration of the vortex relative t6 the 
surrounding fluid as if it were a solid cylinder. The material derivative @ / a t )  gives the 
relative acceleration seen by an observer moving and sliding along the tube with the 
vortex material. The particular combination of terms used here gives, approximately, 
the transverse acceleration seen by an  observer who is moving with the vortex but 
not sliding along it. An added mass term similar to  this was used by WB. 

The second term is the Kutta-Joukowsky lift which results from cross-flow over 
the vortex. This was first used by WB. MS did a careful analysis showing that this 
term is correct when the curvature is small, the error being of order p P A / p ;  where 
pc  is the local radius of curvature. An additional term which MS call ‘tension’ is 
included here in the Kutta-Joukowsky lift. 

The third term, due to MS, is an axial force caused by the swirl induced pressure 
acting on an axial area variation. An elementary derivation is given here. In  a 
coordinate system carried along with the vortex tube the pressure outside the vortex 
is approximately determined by 

- 

aP P 4  - _  
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V~ = r/2nr. (2.5) 

Integrating this from infinity gives the pressure on the vortex tube : 

P(V) = - p r 2 / 8 x A .  (2.6) 

The axial force per unit length on the vortex surface is p(a) aA/as. This is the third 
term above. I n  addition to this force there is another term from the pressure 
difference across the ends of the vortex element. This was obtained by MS by 
integrating (2.4) inside the vortex with an assumed swirl profile. The resulting force 
is equivalent to using a swirl dependent ‘cut-off’ in V ,  and has already been included 
in the Kutta-Joukowsky lift term (in the swirl dependence of p ) .  The equivalence of 
the ‘cut-off’ form and the Rosenhead form of V, has been discussed by Moore 
(1972). 

The above procedure for calculating the axial force strongly resembles the method 
for approximating the pressure force in the shallow-water equations. There the 
vertical pressure gradient in a horizontal layer of fluid is determined in the 
‘ hydrostatic ’ approximation, neglecting vertical acceleration. Here centrifugal 
forces replace gravity, and radial acceleration is neglected. This suggests that  an 
improvement could be obtained by approximating the radial acceleration. This 
would give an additional ‘dispersion ’ term as in the corresponding shallow-water 
equations. 

The last term in (2.3) is also from MS. It represents a non-dynamical ‘buoyancy’ 
force on the tube due to the pressure field which would remain if the local swirling 
velocity were removed. This is given by 

(2.7) -vPB = p(a vB/at f ( VB- V )  v VB). 

The right-hand side of (2.7) is the acceleration of a particle which moves with the 
velocity V. .  The second term on the right-hand side is added because aV,/at is the 
acceleration seen by an  observer moving with velocity V ,  not VB. This will be further 
approximated by neglecting the transverse part of the gradient of V ,  which is 
unknown. Thus we use 

-VP, = p(avB/at-u. tlav~ag). (2-8) 

All of the terms on the right-hand side of (2.3) represent terms which appear in the 
MS external force expressions, MS(4.11) or MS(5.18). Moore & Saffman made an 
additional restriction to flows which are slowly varying in time in addition to the 
small curvature assumption. Because of this, all but the Kutta-Joukowsky lift term 
were found to be small and were neglected by them. We, however, will retain these 
terms. For this reason (2.3) should be thought of as a model equation rather than the 
result of asymptotic analysis. Among the reasons for exploring this model system is 
the fact that the axial force term can be balanced by axial acceleration even on a 
straight vortex. These so-called ‘fast’ terms which were neglected in the MS 
formulation are the necessary terms for existence of axial waves as will be shown in 
$4. Other terms which we have kept are important for the growth rate of helical 
instabilities and other rapid transverse motions. The validity and/or interest in this 
model should be decided by comparison with experiments such as vortex breakdown 
phenomena. 

There are other differences between (2.3) and the MS formulation which will be 
apparent to the reader who compares this equation with MS(5.18), for the external 
forces, and MS(6.7), which contains the inertial terms and internal pressure forces. 
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The differences occur essentially because their material derivative is with respect to 
a particle which moves with the vortex but does not slide along it with the axial flow. 
This means that even for uniform axial flow there are contributions from momentum 
integral terms which do not appear explicitly in (2.3) but are contained in the 
acceleration on the left-hand side of the equation. 

Now denote the local relative velocity by u = V -  V,. Equation (2.3) may then be 
written 

The final forms of the equations to determine the vortex shape and area 

(2.10) 
distribution are 

aria = V, + U, 

a(u-u - if- V,) + (2) i x + (6) y) t ,  * (2.11) 
a6 

= (u * i /n ,  a(2u-u. ii) 
at 

(2.12) 

A = iar/ati, (2.13) 

A4 = A , .  (2.14) 

All the spatial derivatives have been expressed as 6 derivatives. Equation (2.11) is an 
evolution equation for 2u-u - fi( = R) from which u itself may be computed by 
u = +(R + R - ifi. An evolution equation for h (or A )  is obtained by differentiating 
(2.13) with respect to time and using (2.10). This is 

ahpt = i. a( v, + u)/a[. (2.15) 

3. Intrinsic equations 
The equations derived in $2 may be cast in an intrinsic form which is useful for 

comparison with other work, in particular they generalize intrinsic equations derived 
by Betchov (1965) for the motion of vortex tubes without axial flow and with a 
Biot-Savart interaction truncated to the local induction approximation. A local 
orthogonal coordinate system is introduced along the vortex centreline consisting of 
the tangent f, the normal ii and the binormal b which vary along the vortex 
according to the Frenet-Serret formulae 

where K and 7 are the local curvature and torsion. The velocities are represented 
locally by 

VB = w B ~ + u B ~ + v B ~ ,  (3.4) 

and Ir = wi+uii+v6. (3.5) 
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The objective is to find equations for the evolution of u ,  v, w, A, K ,  T without regard 
for the position of the vortex tube in space. The derivation, which is sketched in 
Appendix A, yields the following equations, 

where 

(3.7) 

(3.12) 

(3.13) 

(3.14) 

These equations are completely equivalent to those presented in $2. However, they 
are not independent equations for the set u, v,  w, A, K ,  r ,  in general, because the 
Biot-Savart velocity components are not functions of A ,  K ,  7 alone, but depend on 
other aspects of the geometry as well. The special cases of vortex rings and helices 
of constant area which are described by this limited set are presented below. 

The intrinsic equations can also be used with the local induction approximation 
where the Biot-Savart velocities defined by (3.4) are approximated by (U, = 0, V, = 
(r~/4z)K, WB = 0) where the local-induction parameter K = [In (1/~a) + C] is usually 
further approximated as a constant. In  the latter approximation the Biot-Savart 
components depend only on the local curvature, and the intrinsic equations form a 
closed set. 

3.1. Ring example 

As an example of the utility of the intrinsic equations consider a uniform vortex ring 
with axial flow. While this may appear to  be an academic example, i t  may be possible 
to generate one in a modified vortex generator in which the cylinder housing the 
generator piston is caused to rotate rapidly just as the piston is driven to create the 
vortex ring. For a vortex ring with axial flow 

WB = 0, 

u, = 0, 

V, = ( r K / 4 7 c )  [In ( 8 / K a )  - $ + &.I, (3.15) 
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where ,us = 1 for uniform vorticity and ,us = 0 for a hollow vortex. Since r = 0 and A ,  
K ,  u, v, w are all independent of E ,  it follows that A, = 0, Bl = 0 and A, = WK and the 
equations reduce to 

dhldt = - u ~ K ,  (3.16) 

d(hK)/dt = 0, (3.17) 

dwldt = UWK, (3.18) 

duldt = -O.5w2~-((Th/2A0)v, (3.19) 

dvldt = (rh/2A0) u. (3.20) 

There is a steady solution in which u = 0, w = constant and 

v = - KA, W 2 / r  (3.21) 

which is in agreement with Widnall & Bliss (1971). The forward speed of the ring is 
V,+v. The effect of the axial flow is to cause the vortex to slow down from the 
induced Biot-Savart velocity in order for the Kutta-Joukowsky lift in the resulting 
cross- flow to balance the centrifugal force. 

There is an interesting transient problem. Suppose that a vortex ring of initial 
radius R,, axial velocity wo and area A,( = .a:) is started with u = v = 0 so that the 
initially unbalanced centrifugal force requires radial acceleration. The above 
equations then describe how the motion evolves in time. It will be shown that the 
velocity doesn't tend to the steady state value (3.21), but instead oscillates about 
it. 

Since h = R/R, and K = 1/R, (3.17) is identically satisfied, and (3.16) becomes 

a l a t  = -u. 

From (3.18) and (3.22) an integral 

WR = woR0, 

(3.22) 

(3.23) 

is found which expresses conservation of angular momentum around the ring. 
Another integral can be found from (3.20) and (3.22), namely 

w = - (TRo/4Ao) (R2/R;- 1). (3.24) 

Substituting (3.22), (3.23) and (3.24) into (3.19) gives a differential equation for 
R :  

d2R/dt2 = 0.5w:R:/R3 -0.5(r/2Ao)2R(R2/R~ - 1). (3.25) 

This can be put in a convenient dimensionless form by introducing vo = r /2xao and 
to = a,/v,, the latter being proportional to the turn around time of the vortex. Now 
defining 

t"= tlt,, (3.26) 

= (w:/v:) (a:lR:), (3.27) 

and (RIRO) - 1 = €5 (3.28) 

where 6 is a small parameter, (3.25) may be written 

d2fli3f2 = 0.5(1+ef))-3-0.5f(l + ~ f ) ( 2 + e j ) .  (3.29) 
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When terms of order E on the right-hand side are neglected the solution is f = 

0.5[1- cos (f)], or 
(R/Ro) = 1 + O.%[ 1 - cos (01. (3.30) 

From (3.24) i t  follows that 

w = - (A, w;/RO r )  [ 1 - cos (f)]. (3.31) 

Therefore the solution oscillates about the steady state solution and, while the 
radius of the ring varies by only a very small amount, the oscillation is at such a high 
frequency that the velocity varies by an amount comparable to the Biot-Savart 
velocity when wo is comparable to vo. This can be seen more clearly when the result 
for the forward speed is written 

vB+v = (T/47cfi0){ln (8R0/(ro)--++~/4-(w;/~~)[1 -COS ([)I>, (3.32) 

neglecting terms of order B .  

3.2. Helix example 
A second example is provided by a uniform helix with axial flow. At a particular 
instant the helix has shape 

r = D i ( O ) + z i  (0 = -yz), (3.33) 

in cylindrical coordinates. This is a right-handed helix with respect to the z-direction 
when the wavenumber y is negative, left-handed when y is positive. In  cylindrical 
coordinates the geometric parameters are 

i = ( -Dye+ R ) / (  1 + y2D2)f, (3.34) 

ii = - r ,  (3.35) 

and K = Dy2/(1 +y2D2) ,  7 = - y( 1 + y2D2). (3.37) 

6 = ( - y D f - 8 ) / ( 1  +y2D2)i ,  (3.36) 

In the intrinsic coordinate system the BiokSavart velocity has non-zero components 
V, and W,, however simple expressions are only known (Kelvin 1880) for a helix of 
small pitch, y D ,  and uniform vorticity in which case WB = O(I'y3D2) and 

vB = 7 ry2DK , K = ln(&)-C+a, c = 0.577 .... (3.38) 

For a uniform helix (not necessarily of small pitch) the intrinsic equations are 

dh/dt = - U Y K ,  (3.39) 

d(AK)/dt = - d A ,  (3.40) 

d(h.z)/dt = UTKA, (3.41) 

(3.42) dw/dt = Ml u + ~ U W T  - W U K ,  

2 du/dt = -A1 W+24V-WT+ W( v B T -  wB K )  - ( r h / A o )  21, 

2 dv/dt = - 2B, u + (I'h/Ao) U ,  

(3.43) 

(3.44) 

with A1 = ( W B + ~ ) ~ - ( V B + + ) ~ ,  4 = A 1 7 / ~ .  (3.45) 
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I n  general these equations have a steady solution in which u = 0 ,  h = 1 and K ,  7, w, 
v are constants, provided that the right-hand side of (3.43), which is quadratic in v, 
has real roots. These roots give the solution 

where 
r p=(Y)ra,,  a =  (?) - ra 0 - (y:, - - v,=-. 2mT, 

VO 

The condition that (3.46) be real is 

- 1 - a - ( 2 + 2 a 2 ) t < p <  -1 -a++2+2a2)4 .  (3.47) 

When p is positive (negative) the solution takes the form of a right-handed (left- 
handed) helix when w is positive and of the opposite handedness when it is negative. 
Stability of this solution may be tested as follows. Equations (3.39), (3.40) and (3.41) 
may be manipulated to show that dD/dt = -u. Using this, (3.43) may be written 

d2D/dt2 = QD, (3.48) 

where Q is the quantity v/D.  If (3.47) is satisfied, v/D lies between the two real roots 
of Q and Q is negative. If 3.47 is violated there are no real roots and Q is positive. 
Linearization about the steady solution then shows stability if (3.47) is satisfied and 
exponential growth from any initial condition if it is not. These results will be 
compared below with other known results. 

Assuming small pitch and using (3.38) an expansion can be carried out in powers 
of yS, with D/a,, v/vo and w/vo of order one. Equation (3.46) then gives (with the 
positive sign) 

V 

VO 
(3.49) 

This is not in complete agreement with MS who give an exact result from linear 
theory when D 4 a,. For uniform axial flow and uniform vorticity there should be 
an additional third-order term, -0.25(w/v0) (Dla,) ( y ~ , ) ~  in (3.49). This has been 
traced to the neglected profile dependent momentum integral in (2.2). The missing 
term results from the flux of the swirling part of the flow through the control surface 
by the non-uniform axial velocity of the control surface as it follows the curved 
centreline. For a hollow vortex this term would be zero, and of course it is zero for 
the slightly non-uniform slug flow mentioned in $ 2 ,  for any swirl profile. 

The second solution from (3.46) (the negative sign) expands with a first term of 
order one, v/vo = -D/a, + . . . . Both solutions are stable (to helical disturbances of 
the same wavelength) by the reasoning above. 

There is another formal expansion of (3.46) in powers of ya, in which D/a,, v/vo 
and B( = - ya, w/vo)  are of order one. Notice that p has been redefined here for small 
ya,. When p is of order one and ya, is small this means that w/vo must be large. To 
lowest order this expansion gives 

V/V, = ( D / 2 v O ) [ p -  1 k ( l - 2 p - p 2 ) i ] .  (3.50) 

This is a real solution if - 1 - 4 2  < p <  - 1 + 2 / 2  and is stable in this range. 
Equation (3.50), which is a finite amplitude result, is also a solution in the limit as 
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L)+0 (a straight vortex) for any value of p. This solution is unstable when the 
inequality is violated. The result says that the straight vortex is unstable when 

ya, wIv, > 1 + 4 2 ,  (3.51) 

with the instability taking the form of a left-handed helix when w is positive, right- 
handed when w is negative. The other inequality describes a more unstable situation, 
with the instability occurring when 

- y'To w/vo > - 1 + 4 2 ,  (3.52) 

in the form of a right-handed helix when w is positive, left-handed when it is 
negative. Equations (3.51) and (3.52) agree with results of WB and MS. 

Another source for comparison are the linear stability computations of Lessen, 
Deshpande & Hadji-Ohanes (1973) for hollow and uniform vortices with ' top-hat ' 
axial flow. When the above inequalities are corrected through terms of order 
( y ' ~ ~ ) - ~ ,  which can be deduced from (3.47), they agree with the hollow vortex results 
to within about 10 YO, even for ygo as large as one. For the uniform vortex we can say 
the same, except the available computations to compare with (3.52) are limited to 
small yuo. 

Lessen, Singh & Paillet (1974) have also done a stability study of vortices with 
Gaussian axial flow which shows that the stability of the helical modes is profile 
dependent. The results show that (3.52) is approximately satisfied with 0.2 on the 
right-hand side instead of - 1 + 4 2  so we could say that our result is qualitatively 
correct. However there is a more important difference. Lessen's helical mode becomes 
stable again for larger wavenumbers, for wavelengths comparable to the jet radius. 
There is a band of instability which becomes narrower as w/wo becomes smaller, until 
there is complete stability for w/wo smaller than about 0.66. This shows that our 
results are qualitatively correct for a large enough value of the axial flow. 

It is interesting to speculate about the behaviour of the unstable helix when the 
amplitude ( D )  becomes large. We have therefore solved the intrinsic helix equations 
numerically, in the local induction approximation, starting from u = v = 0,  w = w, 
and an initially small value of D .  The results show that in the unstable range the 
resulting motion is periodic, with D oscillating between the initial value and a 
maximum of order uo. The maximum is larger and the period shorter when the initial 
conditions are further into the unstable range, for fixed y. The axial velocity and 
torsion become smaller as D nears its maximum in such a way that the quantity /?, 
defined in (3.46), penetrates back into the stable range given by (3.47) and prevents 
further growth. A surprising observation is that the results are only slightly 
dependent on the Biot-Savart velocity if the self induction constant is not too large. 
That is, the computational results are nearly the same when V, is set to zero. This 
means that the inertial forces and cross-flow lift are dominant when there is axial 
flow. Also note that when the Biot-Savart components are neglected a = 0 in (3.47). 
If one checks back to the ring example it will be seen that the Biot-Savart velocity 
did not actually appear in those equations. This suggests that insight could result 
from studying the general intrinsic equations (3.6)-(3.14), with all of the Biot-Savart 
components neglected. One might call this the ' no-induction ' approximation. 
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4. One-dimensional flow. Vortex breakdown 
One-dimensional flow will illustrate the dynamical effect of area variation along a 

vortex tube. Consider the case where the vortex is aligned along the z-axis. Then 
s = z ,  t = k and V, = 0. The Lagrangian equations reduce to 

a -  

az/at = w, (4.1) 

(4.2) 

aA/at = aw/af;, (4.3) 

A = az/aE. (4.4) 

awlat = ( r2 /8nA,)  a In (A)/a&, 

It is a simple matter to convert these to the more familiar Eulerian form by replacing 
the material derivative by a/a t  + w a/&, where a/at here is understood to be taken with 
z held fixed, and using (4.4) to convert from E to z derivatives. With A as the 
dependent variable instead of h the resulting equations are 

a A p t  + aAw/az = 0, 

A (awlat + w awlaz) = - a ( r 2  In ( A ) / ~ x ) / ~ z .  

(4.5) 

(4.6) 

These are the same as the equations of one-dimensional isentropic gas dynamics with 
,4 the ‘density’ and f21n(A)/8X the ‘pressure’. Therefore the motion consists of 
waves propagating to the right and left relative to the fluid with ‘sound speed’ c 
defined bv 

II 

d ‘ pressure ’ r2 
d ‘density’ 8nA ’ 

-- c2 = - 

Since the maximum local swirl velocity for a sharp-edged vortex is given by 

(4.7) 

this result says that c = Vmax/2/2. When the vortex is not sharp edged, V,,, is 
defined by (4.8). 

The vortex equations have a closer analogy with the flow of shallow water because 
neither water nor vortex system have an internal energy equation. In this analogy 
the vortex tube area A corresponds to the water depth. In  the shallow-water 
approximation (Whitham 1974) the vertical acceleration is neglected, the pressure 
being determined from the hydrostatic pressure alone. Equations (4.5) and (4.6) may 
be derived from a ‘shallow-water ’ approximation in which the radial pressure 
gradient in the vortex tube is balanced locally by the centrifugal forces of the swirling 
flow. The analogy is even closer if one looks a t  the characteristic form of (4.5) and 
(4.6). The characteristic equations are 

(4.9) I C, : 
C- : 

w-2c = constant along dz/dt = w+c, 
w + 2c = constant along dz/dt = w -c. 

These are the same as for shallow water, or gas dynamics with specific heats ratio 
equal to 2, except with c defined by (4.7). (For shallow water c = (gh);.) 

As for water waves, vortex waves will steepen and ultimately break on the front 
side of a wave of enlargement (a locally swollen core). The basic equations have weak 
solutions with shock discontinuities which conserve mass and momentum in analogy 



294 T. 8. Lundgren and W .  T .  Ashurst 

with bores in water. According to Whitham (1974) the shock jump conditions may 
be written 

w-41 = [Awl, (4.10) 

W[Aw] = [Aw2 + ( P / S x )  In ( A ) ] ,  (4.11) 

where [ 3 indicates the jump in a quantity across the shock and W is the shock 
propagation speed. From these one finds that a right (left) travelling shock with a 
region of area A ,  propagating into a region of smaller area A ,  has velocity of 
propagation 

w = w, +c,Un M J A J / ( ~  -A,/A,)$ (4.12) 

and the fluid velocity behind the front is 

Since the bracketed quantity is always greater than 1, the shock propagates with 
supersonic speed relative to the state in front, as it should. Equation (4.12) gives the 
relative Mach number versus the area ratio. The inverse of this corresponds to 
density ratio versus Mach number, one of the well-known shock relations of gas 
dynamics. Equation (4.13) could be rearranged to give the Mach number behind the 
shock. 

The shallow-water approximations, being long-wave approximations, cease to be 
valid when axial derivatives are no longer small. However, breaking does occur in 
wa,ter and the shallow-water theory gives a satisfactory description of bores and 
hydraulic jumps (steady bores). Because of the strong analogy one might expect 
similar success for vortex waves. The shock-like discontinuity described above 
appears to describe the phenomenon known as vortex breakdown. The shock 
structure of vortex breakdown has been investigated experimentally by Sarpkaya 
(1971) and Faler & Leibovich (1978) and others (Leibovich 1978). The structure is 
several core diameters long and, in a stationary frame, contains a stagnation point 
and a rather distinct annular recirculation bubble which superficially resembles the 
roller which occurs in strong hydraulic jumps. Often vortex breakdown is followed 
by a spiralling disturbance which becomes turbulent. Leibovich (1978) and Escudier, 
Bornstein & Maxworthy (1982) ascribe this phenomenon to the unstable growth of 
helical disturbances on the jet-like (or wake-like) axial flow behind the breakdown, 
a point of view which will be seen to be consistent with the present work. 

The most complete theoretical formulation of vortex breakdown is that of 
Benjamin (1962, 1967), who pursued an analogy with weak undular bores in which 
the process is assumed to be both steady and non-dissipative. In contrast the 
unsteady breaking waves described above terminate in a vortex breakdown 
description which has its analogue with the Rayleigh theory of strong bores (Lamb 
1932), a process in which there is an energy loss. The present equations are non- 
dispersive, however, and cannot describe the undulations observed behind a weak 
vortex breakdown, nor can they describe a non-breaking solitary wave, without 
including additional terms to represent the neglected radial acceleration. 

Comparison may be made between the present theory and a simple example of 
Benjamin's theory which appears not to have been noticed before : a hollow potential 
vortex with uniform axial flow in the core provides co-conjugate states for 
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Benjamin's theory. The details of this are outlined in Appendix B and put in a form 
comparable with (4.12) and (4.13). These results are 

w = w,+ v,,,,(i +A,/A,)-; ,  (4.14) 

w2 = w1f ( 1 - ~ 1 / ~ 2 )  Virnax(1 + ~ i / ~ z ) - ' ,  (4.15) 

where V,,,, is defined by (4.8). These are in agreement with (4.12) and (4.13) for weak 
breakdowns, being the same to  first and second order, respectively, in the small 
quantity ( 1  - A,/A, )  and differing by only about 5 YO for an area ratio of 4 and about 
15 % for an area ratio of 10. In particular both methods give Vmax/d2 as the limiting 
value of the shock speed as the shock strength tends to zero. The close agreement 
may not persist for other pairs of conjugate states. 

A comparison may also be made with a wave speed computation of Maxworthy, 
Mory & Hopfinger (1983). Using Benjamin's (1967) perturbation method with a 
Burgers vortex swirl profile and approximately Gaussian axial flow, with parameters 
selected to agree with experiment, they computed the wave speed for weak waves 
propagating with or against the stream. The results were 0.93 WmkO.72Vmax, where 
W, is the maximum axial velocity and V,,, is not the maximum swirl velocity in their 
profile, but is defined in terms of r as above. Comparing this with the results of the 
present analysis, w +0.7O7Vmax, suggests only a weak dependence on the details of 
the swirl and axial profiles. 

Direct comparison may be made with experimental vortex breakdown results of 
Leibovich (1978) and Garg & Leibovich (1979). They have presented results for six 
stationary vortex breakdown flows in a vortex generator device. The axial and swirl 
velocities were found to be represented by 

(4.16) 

(4.17) 

in both the region upstream of the breakdown where the axial profile is jet-like 
(W, > 0) and downstream where the profile is wake-like (W, < 0). In  each of the flows 
they give values for W,, W,, a and K .  I n  our configuration this corresponds to  a left 
travelling shock with a superimposed uniform velocity to the right which makes the 
shock stationary. In order to  compare we will assume that their maximum velocity 
W, is the same as our average velocity. This gives us a way to define the radius CT, 
1.e. 

KCT' = IOm exp ( -a?) 2nr2 dr  (4.18) 

1 
gives u = a-5. (4.19) 

The quantity K is r/2n, therefore our defined quantity V,,, = r/2na = Kai. The 
shock speed was taken as the negative of the value of W, at the axial position of the 
stagnation point. This had to be determined by interpolation since the flow was in 
a slightly divergent tube. Thus the quantities w ~ / ~ ~ ~ ~ ,  w2/Kmax, W/V,,,, and 
A,/A,  were determined from the experiments and used to calculate values of ( W - wl)/ 
V,,,, and (w,-w1)/VImax versus A,/A,  for comparison with (4.12) and (4.13). These 
results are shown in figures l ( a )  and l ( b )  where the agreement is seen to be 
remarkably good. The other things to notice are that the area ratio across a 
breakdown can be quite large and that the spiral type breakdown occurs for smaller 
area ratios, i.e. these are weaker shocks. 
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FIGURE Shock jump conditions in vortex breakdown. The experimental points are --om Garg & 
Leibovich. , bubble breakdowns; 0, spiral breakdowns; -, present theory; ---, Benjamin’s 
theory for a hollow vortex, (4.14) and (4.15). (a)  Shock speed relative to the upstream state divided 
by the upstream swirl velocity versus area ratio across the shock. (6) Velocity difference across the 
shock divided by upstream swirl. 

A sample computation has been carried out with the Lagrangian form of the 
equations, (4.2) and (4.3), expressed in conservation form in order to  accurately 
capture shocks. When programmed in conservation form the shock jump conditions 
(4.10) and (4.11) will automatically be satisfied. A modified Godunov method was 
used (Van Leer 1979) with spatial increments equal to u,. The initial conditions were 
chosen to be similar to those in a vortex dynamics experiment reported by Leonard 
(1985) in which a hollow vortex with a section of axial flow was simulated by using 
six vortex filaments initially arranged on the surface of a cylinder, wound into a 
helical pattern on one part in order to give axial flow. I n  addition a seventh vortex 
of the same strength extended along the axis. In  the present computation the initial 
core radius was ro and w was taken negative on a section of length 206, in a parabolic 
manner with maximum velocity equal to  the maximum swirl velocity, and zero 
elsewhere. Equation (4.1) was solved simultaneously in order to plot the results 
versus z. Figure 2 ( a )  shows the core variation after 2 time units (2n units are one 
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turn-around-time of the vortex). Figure 2 (b) shows the core radius after 10 time units 
which corresponds to  the final time in Leonard’s figure 11 (b ) .  There is a similarity in 
the results with enlargement on the left and contraction on the right. Figure 2 (c) is 
at 20 time units. It shows complete separation of two simple waves (the Riemann 
invariant w-2c is constant in the left travelling wave and the Riemann invariant 
w+2c is constant in the right travelling wave). A wave of enlargement propagates to 
the left steepening into a vortex breakdown on its front side (it is no longer a simple 
wave after breaking), while a wave of contraction propagates to the right steepening 
into a vortex breakdown on its back side. The vortex breakdowns do not develop into 
sharp discontinuities because of numerical viscosity introduced by the difference 
approximation. At later times the waves continue to separate with relatively small 
change of shape. 

5. Three-dimensional flow. The growth of helical waves 
The basic Lagrangian equations, (2.10)-(2.14, have been programmed using 

MacCormack’s (1971) method. This is essentially a two-step Runge-Kutta method in 

FIQURE 2. Waves on a straight vortex tube in a numerical experiment. Core radius versus axial 
distance both normalized by the upstream core radius. 
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FIGURE 3. Perspective views of growing helical disturbance on a vortex ring. The vortex ring of 
radius lor, with axial velocity w = 2V,,, was initially in the (y,z)-plane. It was perturbed out of 
plane hy z = O.lr,sinnO with n = 6. The viewpoint of the ring is from z = 50u,, y = -86u,, 
z = 0 (z out of page, y to the right, z up). 
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FIGURE 4. Game configuration as figure 3, at T = 3.81. (a )  Core radius versus arc length along the 
ring. ( b )  Axial velocity divided by initial swirl velocity versus arc length. 

time, with spatial derivatives approximated by left or right differences on alternate 
steps. This method was selected because of programming simplicity. The equations 
as written are in conservation form in the tangential direction. The Biot-Savart 
integral, (1 .1)  with p2 = 0 . 2 2 ~ ~  corresponding to uniform vorticity in the core, was 
integrated using cubic splines to determine the tangent vectors. Nodes were inserted 
as required by a criterion based on local curvature and stretching (Ashurst & 
Meiburg 1988). Some computations were done using a large fixed number (of order 
300) of nodes for comparison. All computations reported in this section were based 
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FIQTJRE 5. Initial axial simple wave disturbance on a circular vortex ring. Core radius versus arc 
length at several times showing steepening of the front and stretching at the rear. 

on perturbations from an initially circular ring of radius 10uo. The ring geometry was 
selected because of boundedness and periodicity. 

The computations carried out were intended to test the growth of helical 
disturbances on vortices with axial flow since instability of the axial flow is believed 
to be the cause of the spiralling disturbances associated with vortex breakdown. The 
linearized theory of the stability of helical disturbances on a straight uniform vortex 
with axial slug flow of WB and Lessen et a1. (1973), which was discussed in $3, shows 
instability of helical disturbances of wavenumber k if 

where V,,, is the maximum swirling velocity defined before. Since the jet without 
swirl is unstable for all wavenumbers, swirl has a stabilizing effect on long waves. 
When w is positive, right-handed helices with wavelength L will grow when 

L/u, < 15.2w/Vmax, 

longer disturbances being stable. 
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FIGURE 6. Initial simple wave disturbance on a circular vortex ring. Axial velocity divided by 
initial swirl velocity versus arc length showing decrease in axial velocity magnitude a t  the rear of 
the wave. 

To test this in the ring geometry, the vortex ring was given an axial velocity equal 
to ZV,,, and was perturbed from its circular shape by displacing it from the plane 
with a sinusoidal displacement x = 0 . 1 ~ ~  sin (no) and using 240 fixed nodes. For n = 
6 the initial wavelength of 1 0 . 5 ~ ~  is much shorter than the straight vortex critical 
value 30.4g0. The results are shown in figure 3 where six helical waves rapidly grow 
to finite amplitude. The growth rate is comparable to predictions from the intrinsic 
equations, but the computation was stopped, because of inadequate resolution of the 
very twisted sections, before the maximum amplitude predicted by that analysis was 
reached, so we do not know if there is a tendency to oscillate in this geometry. 
Figures 4 (a) and 4 (b) show the vortex radius and the axial velocity a t  the last time 
shown in figure 3. These quantities are not quite constant around the ring but show 
growing periodic variation and the axial velocity in particular shows very rapidly 
varying shock-like behaviour. 

A computation was done to test the spontaneous growth of a helix on an axial 
wave propagating into an approaching stream on the vortex ring. The maximum 
area ratio in the wave was taken as 4 and the velocity of the approach stream was 
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T = 9.11 
FIGURE 7. Initial simple wave disturbance on a circular vortex ring. Perspective views of the vortex 
ring showing steepening of the front with time and the growth of a helical wave a t  the rear in 
the region where figure 5 shows axial stretching. The viewpoint is from z = 50~7,, y = 86a,, 
z = 5 0 ~ ~ .  

w1 = -O.SV,,,,, these being realistic values for vortex breakdown from the Garg & 
Leibovich experiments (Leibovich 1978). The initial core radius distribution was 
taken to be 

a parabolic distribution of h on + of the ring. The initial axial velocity was taken t,o 
be appropriate for a right travelling simple wave (on a straight vortex), with the 
Riemann invariant w+2c equal to a constant. The initial condition is thus 

(5.4) 

The maximum velocity in this profile is 0.2lV,,,,, in the opposite direction to the 
approach flow. (The maximum velocity is 0.42 times the local Vmax.) The results are 
shown in figures 5, 6 and 7. The core radius profile in figure 5 propagates forward, 
steepening on the front side. After about 8 time units a stretched out region begins 
to appear a t  the rear of the wave and becomes increasingly stretched out with time 
as can be seen from the reduced size of the core radius. The velocity in figure 6 shows 
a corresponding large decrease in magnitude in the same region. Both of these 
quantities are plotted versus arc length along the vortex core measured from a 
Lagrangian point which was initially a t  the tail of the wave. In  figure 7 a series of 
perspective views of the vortex clearly show the Steepening of the wave front and the 
growth of about 2 wavelengths of a helix in the stretched out region at the rear of 
the wave. The helix, initiated by the non-uniformity of the initial conditions, starts 
with one loop and continues to wind up new turns. The region with positive velocity 
near the middle and front of the wave is almost as unstable and would also grow a 
helical wave (of the opposite handedness) if one were excited. In fact this would be 
more like the disturbances seen in the vortex breakdown phenomenon. The 
individual waves of the helix can also be seen in the core radius plot. The wavelength 

w/Krnax = -0.5+ d 2 ( 1  --(T~/(T). 
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FIGURE 8. Initial 4 to 1 simple wave on a circular vortex with zero axial velocity outside of the 
simple wave. A small initial out of plane three-wave sinusoidal perturbation is given to the middle 
half of the simple wave. (a) Core radius versus arc length a t  two times. (b)  Axial velocity divided 
by initial swirl velocity versus arc length at the same two times. (c) Perspective view of the vortex 
ring at  the later time. 
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is obviously very short for these equations, about 4a. Short waves of a similar nature 
are observed behind vortex breakdowns (Maxworthy, Hopfinger & Redekopp 
1985). 

There were 70 nodes a t  the beginning of the computation and this increased to 97 
by the end. Since these were mostly added in the helix region, there were about 15 
nodes to resolve each wavelength of the helix. 

As a final example we have computed one more 4 to 1 simple wave with core 
variation given by (5.3), but with zero approach velocity so that the axial velocity 
is given by (5.4) without the ‘-0.5’ term. Now the axial velocity is positive in the 
simple wave and a right-handed helix should grow. We have initiated a disturbance 
by placing an initial out of plane three wave sinusoidal disturbance with amplitude 
0 . 0 5 ~ ~ ~  on the middle half of the simple wave. The results are shown in figure 8, where 
(a)  and (b) show the core radius and axial velocity a t  the initial time and a t  one later 
time. Figure 8 (c)  shows a perspective view of the right-handed helix which emerges. 
This example simulates a vortex breakdown front, with trailing unstable transition 
to turbulence, propagating on a vortex which has no initial axial velocity, i.e. 
turbulence propagating into a stable region. While we know of no examples of strong 
vortex breakdown propagating on a vortex core with zero axial velocity, the result 
is similar to the breakdowns reported by Leibovich in which the upstream state has 
a stable Gaussian velocity profile and the vortex breakdown changes the parameters 
of the axial flow such that it becomes unstable to helical disturbances and finally 
becomes turbulent, i.e. it is propagating turbulence. 

7. Discussion 
The equations under study here have been derived subject to several limitations. 

First of all, the cross-section of the vortex tube is assumed to be approximately 
circular. This may not be the case when there is significant cross-flow. There could 
be a tendency for the vortex to fission into more than one core as observed for a jet 
in a cross-flow. Also, the derivation was for a vortex tube with radius of curvature 
much longer than the core radius. The short helical waves, which appear in figures 
7 and 8, are marginal. We hope they are a t  least qualitatively represented. A danger 
is that real helical waves could be excited accidentally a t  the wavelength of the nodal 
separation, but this possibility has been suppressed by always keeping the nodal 
spacing much shorter than the wavelength of any short structures that appear. 

This work was supported by the US Department of Energy, Office of Basic Energy 
Sciences, Division of Chemical Sciences. T. S. L. was a visitor to the Combustion 
Research Facility a t  Sandia National Laboratories under the Summer Faculty 
Program (1985). 

Appendix A. Intrinsic equations for the motion of a vortex tube 
Starting with the Frenet-Serret formulae 

ailas = K i i ,  aii/a8 = - K i +  76, a 6 p s  = - ri i , 

and the local representation of the velocity fields which gives 

a+ = (w,+ w) i+ (u, +n) ii+ (v, + v )  6, 



304 T.  S .  Lundgren and W .  T .  Ashurst 

differentiate the last equation with respect to  6, using 
obtain 

= h i  and (A 1)  to 

+ a(vB+v) 6 +  (V, + V )  h7A. (A 3) 
a t  

Taking the f component of this (using i. a$/at = 0 )  gives 

ahpt = a( k& f w)/at-  (& + u )  h K ,  (A 4) 

and using this to eliminate ah/& from (A 3) leaves 

&/at = A +A, 6,  (A 5 )  

where A, and A, are defined by (3.12) and (3.13). This process is repeated, 
differentiating (A 5 )  with respect to g to obtain 

Take the scalar product with A (using ri . aii/at = 0) to obtain 

a ( A K ) / a t  = aAl/at-A,hT. (A 7 )  

(A 8) 

(A 9) 

Using this to eliminate a ( h K ) / a t  from (A 6) gives 

a q a t  = B, &A, f. 

a(h7)/at = AKA, + aBl/a[, 

Repeat this process again by differentiating (A 8) with respect to [ to find 

and a6/at = -A, f -  B, A. (A 10) 

The final step is to write (2.11) in the form 

a ~ ) ,  a; a u ,  aii av  a6 a(ufi+v6-wBf-u,fi-v,$) 

at - t +  w- + 2 --n+ 2u-+ 2 --b + 2?1--= - 
at at at at at at ( A )  

and substitute for a f / a t ,  aA/at and aS/at from (A 5 ) ,  (A 8) and (A 10). The components 
of this equation are (3.9), (3.10) and (3.11), and (A 4), (A 7 )  and (A 9) are (3.6), (3.7) 
and (3.8). 

Appendix B. Example of Benjamin's theory of vortex breakdown 
A circular vortex tube is oriented along the z-axis. The flow is assumed to be 

frictionless and steady. The upstream state from which waves are supposed to arise 
has axial velocity W and swirl velocity V which are prescribed functions of 
y( = kr,). The stream function Yk(y) for the primary flow is defined by W = dYJdy, 
YA(0) = 0, and the pressure can be found by integrating dpldy = pV/2y. Hence the 
Bernoulli constant H = p/p+ $( w2 + VZ) and the quantity I = yV2, which is 
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proportional to the square of the circulation, can be expressed as functions of y or 

I n  a state of motion arising from the primary state H and I keep their original 
values along stream surfaces. Benjamin (1962) showed that these properties require 
the stream function to satisfy 

F A .  

where H (  Y)  and I( Y) have the same forms as the functions H (  !PA) and I( !PA) derived 
for the primary flow. The boundary conditions are Y ( z , O )  = 0 and aY(z, co)/ay = 

ayA(z, m)/ay. 
A uniform solution Y = YB(y) + Y A ( y )  of the ordinary differential equation 

is said to be conjugate to the primary solution YA(y). This is to be thought of as the 
uniform state downstream of the vortex breakdown. Equation (B 1) describes the 
transition between the two uniform conjugate states. 

As an example consider the case where the primary state is a hollow vortex of 
radius uA with slug flow in the core, 

and 

where ( -  W,) is the constant speed of propagation of the wave if i t  were seen in a non- 
stationary frame. 

The functions H (  ul) and I( Y)  are found to be 

and 

Since H and I are constant in both the inner and outer regions it follows that 
d2 Y/dy2 = 0 in each of these regions, therefore in the downstream conjugate state W 
is constant on each side of a discontinuity a t  r = uB. Conservation of mass and the 
boundary condition at infinity give 

Then (A 6) and the definition of I give 
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Therefore the conjugate state is a hollow vortex of radius vB with slug flow in its core. 
These could be called self-similar or co-conjugate states. 

There is more information to be obtained here. Since the pressure across the 
interface a t  r = crB must be continuous, and H ,  V and W are discontinuous, the 
definition of H requires continuity of H - ;( w2 + V 2 ) .  Thus 

This equation and 

may be solved for 

where VAmax = r / % v A .  To put this in a form to be compared with (3.12) and (3.13) 
in which a wave is propagating to the right, identify state A with state 1 and state 
B with state 2 and subtract W, from all velocities, defining w1 = WA- W,, w2 = 

WB - W, and denote by W the propagation speed ( -  W,). Then 

W = w,+ &max/( l+Al/A2)~ 

is the same as (4.14), and 

w Z - W ~  = WB- WA = WA(A1/A2-1) (B 13) 

gives (4.15). This appears t o  be the only example of Benjamin's theory for which 
jump conditions have been formulated. 
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